Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Infect Dis Poverty ; 9(1): 69, 2020 Jun 18.
Статья в английский | MEDLINE | ID: covidwho-2269139

Реферат

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has become a pandemic causing global health problem. We provide estimates of the daily trend in the size of the epidemic in Wuhan based on detailed information of 10 940 confirmed cases outside Hubei province. METHODS: In this modelling study, we first estimate the epidemic size in Wuhan from 10 January to 5 April 2020 with a newly proposed model, based on the confirmed cases outside Hubei province that left Wuhan by 23 January 2020 retrieved from official websites of provincial and municipal health commissions. Since some confirmed cases have no information on whether they visited Wuhan before, we adjust for these missing values. We then calculate the reporting rate in Wuhan from 20 January to 5 April 2020. Finally, we estimate the date when the first infected case occurred in Wuhan. RESULTS: We estimate the number of cases that should be reported in Wuhan by 10 January 2020, as 3229 (95% confidence interval [CI]: 3139-3321) and 51 273 (95% CI: 49 844-52 734) by 5 April 2020. The reporting rate has grown rapidly from 1.5% (95% CI: 1.5-1.6%) on 20 January 2020, to 39.1% (95% CI: 38.0-40.2%) on 11 February 2020, and increased to 71.4% (95% CI: 69.4-73.4%) on 13 February 2020, and reaches 97.6% (95% CI: 94.8-100.3%) on 5 April 2020. The date of first infection is estimated as 30 November 2019. CONCLUSIONS: In the early stage of COVID-19 outbreak, the testing capacity of Wuhan was insufficient. Clinical diagnosis could be a good complement to the method of confirmation at that time. The reporting rate is very close to 100% now and there are very few cases since 17 March 2020, which might suggest that Wuhan is able to accommodate all patients and the epidemic has been controlled.


Тема - темы
Betacoronavirus , Coronavirus Infections/epidemiology , Epidemiologic Methods , Models, Statistical , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , China/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , SARS-CoV-2 , Young Adult
2.
J Infect Public Health ; 15(5): 499-507, 2022 May.
Статья в английский | MEDLINE | ID: covidwho-1814756

Реферат

BACKGROUND: Critical questions remain regarding the need for intensity to continue NPIs as the public was vaccinated. We evaluated the association of intensity and duration of non-pharmaceutical interventions (NPIs) and vaccines with COVID-19 infection, death, and excess mortality in Europe. METHODS: Data comes from Our Word in Data. We included 22 European countries from January 20, 2020, to May 30, 2021. The time-varying constrained distribution lag model was used in each country to estimate the impact of different intensities and duration of NPIs on COVID-19 control, considering vaccination coverage. Country-specific effects were pooled through meta-analysis. RESULTS: This study found that high-intensity and long-duration of NPIs showed a positive main effect on reducing infection in the absence of vaccines, especially in the intensity above the 80th percentile and lasted for 7 days (RR = 0.93, 95% CI: 0.89-0.98). However, the adverse effect on excess mortality also increased with the duration and intensity. Specifically, it was associated with an increase of 44.16% (RR = 1.44, 95% CI: 1.27-1.64) in the excess mortality under the strict intervention (the intensity above the 80th percentile and lasted for 21 days). As the vaccine rollouts, the inhibition of the strict intervention on cases growth rate was increased (RR dropped from 0.95 to 0.87). Simultaneously, vaccination also alleviated the negative impact of the strict intervention on excess mortality (RR decreased from 1.44 to 1.25). Besides, maintaining the strict intervention appeared to more reduce the cases, as well as avoids more overall burden of death compared with weak intervention. CONCLUSIONS: Our study highlights the importance of continued high-intensity NPIs in low vaccine coverage. Lifting of NPIs in insufficient vaccination coverage may cause increased infections and death burden. Policymakers should coordinate the intensity and duration of NPIs and allocate medical resources reasonably with widespread vaccination.


Тема - темы
COVID-19 , Vaccines , COVID-19/prevention & control , Europe/epidemiology , Humans , SARS-CoV-2 , Vaccination
3.
Infect Dis Poverty ; 9(1): 129, 2020 Sep 15.
Статья в английский | MEDLINE | ID: covidwho-760641

Реферат

To avoid possible confusions to the readers, we provide further explanations for the eq. (3) in the research article "Estimating the daily trend in the size of the COVID-19 infected population in Wuhan" published in the Infectious Diseases of Poverty.


Тема - темы
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Betacoronavirus/isolation & purification , COVID-19 , China/epidemiology , Humans , Models, Statistical , Pandemics , SARS-CoV-2
Критерии поиска